Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance
نویسندگان
چکیده
Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R²<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21(st) Century.
منابع مشابه
Spatial heterogeneity and soil nitrogen dynamics in a burned black spruce forest stand: distinct controls at different scales
We evaluated spatial patterns of soil N and C mineralization, microbial community composition (phospholipid fatty acids), and local site characteristics (plant/forest floor cover, soil pH, soil %C and %N) in a 0.25-ha burned black spruce forest stand in interior Alaska. Results indicated that factors governing soil N and C mineralization varied at two different scales. In situ net N mineralizat...
متن کاملSpatial heterogeneity of understory vegetation and soil in an Alaskan upland boreal forest fire chronosequence
In this study we characterized spatial heterogeneity of soil carbon and nitrogen pools, soil moisture, and soil pH of the first 15 cm of the soil profile; depth of the organic horizon; forest floor covers; and understory vegetation abundances in three sites (1999, 1987 and 1920 wildfires) of a boreal forest chronosequence of interior Alaska. We also investigated the cross-dependence between und...
متن کاملInfluence of coarse wood and pine saplings on nitrogen mineralization and microbial communities in young post-fire Pinus contorta
Nitrogen (N) limits productivity in many coniferous forests of the western US, but the influence of postfire structure on N cycling rates in early successional stands is not well understood. We asked if the heterogeneity created by downed wood and regenerating pine saplings affected N mineralization and microbial community composition in 15-yr old lodgepole pine (Pinus contorta var. latifolia) ...
متن کاملMicrobial community variation and its relationship with nitrogen mineralization in historically altered forests.
Past land use can impart soil legacies that have important implications for ecosystem function. Although these legacies have been linked with microbially mediated processes, little is known about the long-term influence of land use on soil microbial communities themselves. We examined whether historical land use affected soil microbial community composition (lipid profiles) and whether communit...
متن کاملVariation in NH4 C mineralization and microbial communities with stand age in lodgepole pine (Pinus contorta) forests, Yellowstone National Park (USA)
Soils and vegetation were analyzed in 20 lodgepole pine (Pinus contorta) forest stands, varying in age from 50 to 350 years, that had initiated following stand-replacing fire. Our goal was to determine how nitrogen availability (NH4 –N) and microbial community composition varied with stand age-class and to determine whether differences could be explained by canopy, soil, or understory character...
متن کامل